

Universal Math Learning Strategies

1. Use Multiple Representations

- Visual: Graphs, diagrams, flowcharts (e.g., unit circle for trig, slope fields for calculus).
- Symbolic: Formulas and identities.
- Verbal: Explain steps aloud or write out reasoning.
- Tabular: Input-output tables for functions, truth tables for logic.

2. Metacognitive Strategy Templates

- "What do I know?"
- "What is being asked?"
- "What tools or rules apply here?"
- "Can I check this another way?"

3. Scaffolded Problem Solving

- Provide guided steps initially, fade over time.
- Break problems into parts (label steps 1, 2, 3...).
- Offer sentence stems for proofs or explanations.

4. Color Coding and Visual Chunking

- Use consistent colors to represent:
 - Like terms
 - Function types
 - Positive vs. negative
 - Steps in a sequence
- Visually isolate operations or identities.

5. Digital Tools & Supports

- Desmos, GeoGebra, Wolfram Alpha for visualization and checking work.
- Speech-to-text for writing equations.
- Annotation tools to draw directly on digital math sheets.

6. Spaced Retrieval + Interleaving

- Practice different types of problems in mixed sets.
- Revisit topics over time, don't cram.

References

- Boaler, J. (2016). Mathematical mindsets: Unleashing students' potential through creative math, inspiring messages and innovative teaching. Jossey-Bass.
- National Council of Teachers of Mathematics (NCTM). (2014). Principles to actions: Ensuring mathematical success for all. NCTM.
- Mayer, R. E. (2009). Multimedia learning (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511811678
- Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. *Cognitive Science*, *13*(2), 145–182. https://doi.org/10.1016/0364-0213(89)90002-5

Updated: 2025

